2 June, 2020 Revista Digital sobre Patentes, Marcas y Propiedad Intelectual

Mutando con genes sintéticos, una buena manera de obtener proteínas mejoradas

Dr. Edson Cárcamo Noriega, Dra. Claudia Martínez Anaya y Dr. Paul Gaytán Colín

[email protected]

Mediante la aplicación del método científico, estudiantes e investigadores contestan preguntas que van desde lo más básico, hasta la resolución de problemas específicos en diversas áreas del conocimiento. Los resultados del gran número de experimentos que se llevan a cabo cotidianamente en el IBt son publicados en revistas internacionales para compartir esos hallazgos con otros investigadores en todo el mundo. En el IBt se publican anualmente alrededor de 150 artículos en revistas científicas. En esta sección se presenta una selección de resúmenes de publicaciones recientes del IBt, con la intención de dar una idea del panorama del trabajo experimental que hacen los investigadores y los estudiantes de nuestro instituto.

Las células de todos los organismos del planeta, grandes y microscópicos, están formadas, entre muchas otras moléculas, de proteínas.

Además de permitirnos la vida, las proteínas participan en nuestras actividades cotidianas más de lo que creemos, no sólo llevando a cabo procesos biológicos en nuestro cuerpo, o como nutrientes en los alimentos que consumimos, sino que se han aprovechado numerosas proteínas de diferente origen en procesos tecnológicos, por lo que están presentes en una gran variedad de productos de uso común como pinturas, pegamentos, detergentes, telas, papel, medicamentos, etc.

¿Pero, qué son las proteínas? Las proteínas son biomoléculas formadas por cadenas lineales de aminoácidos cuyo orden es muy preciso y está establecido por la información codificada en el ADN de las células. La secuencia de las proteínas se compone de 20 aminoácidos diferentes, por lo que cada posición en la cadena podría estar precedida o seguida de algún otro de éstos 20, lo que resulta en un número inmenso de combinaciones posibles.

Por ejemplo, para una proteína pequeña formada por una cadena de 100 aminoácidos, existen más combinaciones en secuencia que granos de arena en el mundo. Imaginemos entonces la variabilidad que es posible en proteínas más grandes, teniendo en cuenta que el promedio anda en poco más de 300 aminoácidos, pudiendo llegar hasta los miles. A pesar de esta casi infinita posibilidad de combinaciones, en la naturaleza existe sólo una cantidad relativamente pequeña de proteínas que evolucionaron durante millones de años y se han mantenido hasta nuestros días (por selección natural) para realizar funciones específicas. Esto quiere decir que existen muchísimas posibilidades de combinaciones que nunca han ocurrido en la naturaleza, pero que podrían existir si nosotros las generamos en el laboratorio, cambiando alguno o varios de los aminoácidos, en una cierta posición de la secuencia para generar una variante que pudiera tener una función ligeramente diferente a la original. Esto representa un gran potencial en aplicaciones de utilidad para el hombre. En otras palabras, si la naturaleza creó una proteína que nosotros hemos estado usando (por ejemplo, en los detergentes para disolver mejor la grasa al lavar la ropa), pero que no resiste altas temperaturas (porque se desnaturaliza y deja de ser funcional), en el laboratorio nosotros podríamos tomar el gen de esa proteína y cambiar algunos pocos aminoácidos y crear una variante que haga lo mismo, pero que ahora resista al calor. A este tipo de manipulaciones se les llama ingeniería de proteínas.

El objetivo de la ingeniería de proteínas es crear nuevas variantes de proteínas con aplicaciones en la biología o la industria. Esto se logra modificando la secuencia de los aminoácidos de las proteínas existentes para cambiar o mejorar su función, no directamente en la proteína, sino en su gen como se explicó antes. Al proceso de modificación de la secuencia de un gen se le conoce como mutagénesis, y puede ser específica (en alguna posición que hayamos decidido, basados en información previa) o aleatoria (que ocurre al azar en distintas posiciones de la secuencia). Debido a que no conocemos la función de cada aminoácido en las proteínas, la mutagénesis con esta estrategia ha sido más exitosa debido a que provoca cambios aleatorios a lo largo de la cadena, resultando en una mayor probabilidad de éxito para crear proteínas con funciones de utilidad práctica.

Existen distintos métodos con los que el gen de una proteína puede mutagenizarse aleatoriamente, la mayoría basados en la introducción de cambios en el ADN al momento de ser copiado por una enzima (la llamada ADN polimerasa), que es propensa a equivocarse. No obstante, estos métodos presentan una tendencia en los cambios realizados, es decir, ciertos cambios ocurren más frecuentemente que otros. Una tendencia en la mutagénesis se refleja en favorecer la presencia de algunas de las proteínas obtenidas, provocando la pérdida de variantes potencialmente exitosas.

Recientemente, en nuestro laboratorio desarrollamos un método químico de mutagénesis aleatoria sin tendencia, basado en la síntesis de pequeñas cadenas de ADN llamadas oligonucleótidos. De manera convencional, estos compuestos son fabricados en equipos especializados que unen cada uno de los cuatro nucleótidos A, C, G y T (que en el equipo se encuentran separados y puros) en la secuencia deseada (por ejemplo: ATGCATCACCAT). Sin embargo, en el método de mutagénesis que nosotros creamos, cada uno de los nucleótidos puros es reemplazado con un nucleótido “contaminado” con los otros tres, dando como resultado cierta probabilidad de cambio en cada posición respecto a la secuencia original. Debido a que la reactividad química de los cuatro nucleótidos es similar, la probabilidad de que se incorporen a la secuencia depende directamente de la proporción de “contaminación”, es decir que la probabilidad de incorporación de cada uno de los cuatro nucleótidos es directamente proporcional a su porcentaje en la mezcla de reacción. Por ejemplo, si para incorporar una T (timina) a la secuencia se utiliza una mezcla de T (97%), A (1%), C (1%) y G (1%), se generará una probabilidad de mutagénesis del 3% (ya que del total 100 hay 3% de los “contaminates” A, C y G). Esto permite modular el grado de mutagénesis a criterio, simplemente cambiando la proporción de los nucleótidos en el tubo de reacción. Una vez generados los oligonucleótidos mutados, éstos son ensamblados enzimáticamente para dar lugar a una variedad de genes mutados, “salpicados” con mutaciones, y por ello el método se denomina “Spiked Genes”

Una vez que se implementa un técnica o método nuevo, hay que determinar qué tan efectivo resulta, por lo que para validar el nuestro escogimos el gen de una proteína modelo. Así, generamos cambios en la secuencia del gen de la proteína roja fluorescente llamada mKate, muy útil en Biología Molecular porque como su nombre lo indica es una proteína que fluoresce de color rojo cuando su secuencia es la natural. Las proteínas codificadas por los genes mutados en la síntesis química que nosotros llevamos a cabo, dieron como resultado variantes verdes, amarillas y anaranjadas (debido a los cambios estructurales y sus interacciones producidos en la proteína nueva), diferentes a la proteína roja original (Figura 2). Cuando analizamos las secuencias resultantes de la mutagénesis responsable de los diferentes colores, observamos homogeneidad en los cambios introducidos, así como una tasa de mutagénesis similar a la predicha, lo que demostró la ausencia de una tendencia favorecida en los cambios puntuales de nucleótidos.

Los resultados de nuestro trabajo son una aportación al campo de la ingeniería de proteínas que permitirá el mejoramiento de otras proteínas de interés, tanto en los laboratorios de investigación como a nivel industrial.

Este trabajo fue originalmente publicado en el siguiente artículo científico:

Cárcamo E., Roldán-Salgado A., Osuna J., Bello San-Martín I., Yañez J.A., Saab-Rincón G., Viadiu H., Gaytan P. (2017), Spiked Genes: A Method to Introduce Random Point Nucleotide Mutations Evenly throughout an Entire Gene Using a Complete Set of Spiked Oligonucleotides for the Assembly, ACS Omega, 2, 3183-3191.

Fuente: Revista Biotecnología en Movimiento

Comparte tu opinión sobre este artículo

Comentarios

Related Posts

Crean científicos de la UAM ecológico proceso químico que permite recuperar plomo de acumuladores usados

24 febrero, 2016

24 febrero, 2016

FUENTE: AGENCIA ID * El sistema llamó la atención de instituciones británicas por su bajo impacto ambiental, pero en nuestro país...

Evitan amputaciones de pie diabético con nanopartículas de plata

13 septiembre, 2016

13 septiembre, 2016

FUENTE: AGENCIA ID Investigadores de la UNAM salvan extremidades a 60 personas a partir de su desarrollo Una de las...

Ceniaq, investigación científica y tecnológica al servicio de los pacientes quemados

25 mayo, 2017

25 mayo, 2017

Por Armando Bonilla Ciudad de México.  (Agencia Informativa Conacyt).- Fue el 5 de junio de 2009 cuando México y el...

Por segundo año consecutivo, robot de servicio desarrollado por el INAOE gana el primer lugar en el Torneo Mexicano de Robótica

19 abril, 2016

19 abril, 2016

AUTOR: Boletín de prensa FUENTE: AGENCIA INFORMATIVA CONACYT Departamento de Difusión Científica Instituto Nacional de Astrofísica, Óptica y Electrónica Boletín de...

Construirán centro de estudios vitivinícolas en Baja California

13 diciembre, 2018

13 diciembre, 2018

Por Karla Navarro Ensenada, Baja California.  (Agencia Informativa Conacyt).- El Centro de Enseñanza Técnica y Superior (Cetys) Universidad albergará en...

Innovación por medio del fomento de la cultura de patentes

15 febrero, 2017

15 febrero, 2017

Saltillo, Coahuila. 31 de enero de 2017 (Agencia Informativa Conacyt).- El Consejo Estatal de Ciencia y Tecnología del Estado de Coahuila...

¡Ciudad Activa!, sistema web de participación ciudadana pública

9 abril, 2017

9 abril, 2017

INSTITUTO POLÍTECNICO NACIONAL Ciudad de México, a 28 de marzo de 2017 COMUNICADO DE PRENSA C-246 Detecta problemáticas que aquejan...

Talento politécnico en la industria automotriz

18 diciembre, 2018

18 diciembre, 2018

Por Armando Bonilla Ciudad de México.  (Agencia Informativa Conacyt).- Un banco de pruebas que asegura la calidad de mangueras de...

¿Cómo se desarrollan las vacunas?

5 agosto, 2017

5 agosto, 2017

Por Dalia Patiño Puebla, Puebla. (Agencia Informativa Conacyt).- Para hacer ciencia se necesita pasión por lo que haces, más allá de...

Experimenta CIATEJ vacuna contra la tuberculosis

28 abril, 2016

28 abril, 2016

AUTOR: Montserrat Muñoz FUENTE: AGENCIA INFORMATIVA CONACYT Guadalajara, Jalisco. (Agencia Informativa Conacyt).- Casi un tercio de la población mundial vive con tuberculosis...

Un chile único en el mundo se cultiva en Jalisco

2 junio, 2018

2 junio, 2018

Por Pablo Miranda Ramírez Guadalajara, Jalisco. (Agencia Informativa Conacyt).- Desde los Altos de Jalisco se extiende una tierra fértil y...

Telemonitorización de pacientes con app

16 junio, 2016

16 junio, 2016

AUTOR: Lizbeth Barojas FUENTE:  AGENCIA INFORMATIVA CONACYT Veracruz, Veracruz. (Agencia Informativa Conacyt).- Con la intención de optimizar la calidad de vida de...

Patentan investigadores mexicanos fungicida orgánico para control de la roya del café

8 febrero, 2018

8 febrero, 2018

El desarrollo permitirá a los productores detener millonarias pérdidas, sin contaminar el ambiente La llamada roya es un hongo (Hemileia...

Crea investigador “etiquetas híbridas” que localizan herramientas en plantas industriales

19 octubre, 2016

19 octubre, 2016

La tecnología, capaz de transmitir electricidad por aire funciona a través de señales de radiofrecuencia Las herramientas de trabajo utilizadas...

Desarrollan investigadores mexicanos tecnología para cargar de forma inalámbrica dispositivos, automóviles y teléfonos

7 enero, 2019

7 enero, 2019

Se vislumbra su uso también en la industria biomédica para baterías en corazones artificiales o dispositivos cardiacos Un estudiante y...